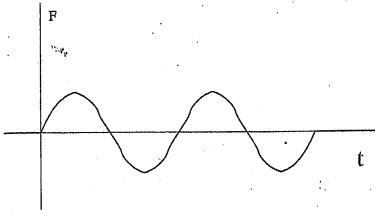

Physics 105A Problems due Oct. 2/1


AP3. A block of mass m is attached to a spring with force constant k; the damping coefficient is β . The driving force F(t) (which is graphed below) is periodic with period (2π) ; it is given by F(t) = -A for t from $-\pi$ to 0, and F(t) = +A for t from 0 to $+\pi$, where A is a constant. Write the series expression for the particular solution $x_p(t)$.

AP4. Again, mass m, force constant k, but this time $\beta=0$. The block is at rest for t<0; then a driving force is applied. For some integer n, the driving force is given by

$$F(t) = A\sin(\omega_0 t)$$
 for $0 < t < \frac{2\pi n}{\omega_0}$; $F(t) = 0$ for $t > \frac{2\pi n}{\omega_0}$. where (as usual) $\omega_0 = (k/m)^{1/2}$

For example, for n = 2, F looks like this:

Find x(t) for $t > \frac{2\pi n}{\omega_0}$